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Abstract. One of the purposes of studying protein
stability changes upon mutations is to get information
about the dominating interactions that drive folding
and stabilise the native structure. With this in mind,
we present a method that predicts folding free-energy
variations caused by point mutations using combina-
tions of two types of database-derived potentials, i.e.
backbone torsion-angle potentials and distance poten-
tials, describing local and non-local interactions along
the chain, respectively. The method is applied to
evaluate the folding free-energy changes of 344 single-
site mutations introduced in six different proteins and
a synthetic peptide. We found that the relative
importance of local versus non-local interactions along
the chain is essentially a function of the solvent
accessibility of the mutated residues. For the subset of
totally buried residues, the optimal potential is the
sum of a distance potential and a torsion potential
weighted by a factor of 0.4. This combination yields a
correlation coefficient between measured and computed
changes in folding free energy of 0.80. For mutations
of partially buried residues, the best potential is the
sum of a torsion potential and a distance potential
weighted by 0.7. For fully accessible residues, the
torsion potentials taken alone perform best, reaching
correlation coefficients of 0.87 on all but 10 mutations;
the excluded mutations seem to modify the backbone
structure or to involve interactions that are atypical
for the surface. These results show that the relative
weight of non-local interactions along the sequence
decreases as the solvent accessibility of the mutated
residue increases, and vanishes at the protein surface.
On the contrary, the weight of local interactions
increases with solvent accessibility. The latter interac-
tions are nevertheless never negligible, even for the
most buried residues.
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1 Introduction

Protein engineering experiments have proven to be
powerful tools for studying stability changes upon
mutations, both in the folded and in the transition
states [1]. Specific mutations are introduced via site-
directed mutagenesis, and the resulting changes in
unfolding free energy and in the free energy of activation
are measured [2, 3]. By appropriate choice of the
mutations, the stability changes can be related to
the formation or breaking of specific interactions in
the native structure or in folding intermediates.

Beside the experimental techniques, several theoret-
ical approaches [4, 5] exist, their purpose being to
rationalise experimental data and to predict the effect
of new mutations so as to limit the number of exper-
imental tests. Up to now, however, none of these
methods has been completely satisfactory: either they
use detailed atomic models [4] and are thus so com-
puter time-consuming that they can only be applied to
a few mutations, or they are based on rougher protein
descriptions [5], but then the computed stability chan-
ges of mutations at different sites and in different
proteins are usually not comparable, thereby limiting
their predictive value.

The approach described in this paper [6-8] does not
present this shortcoming: it allows the changes in
folding free energy caused by mutations introduced in
different sites of various proteins to be predicted with
satisfactory accuracy. The feature that explains the
good performance of our method is that we use linear
combinations of different potentials, describing differ-
ent kinds of interactions, whose coefficients essentially
depend on the solvent accessibility of the mutated
residues.



2 Set of mutations considered

The present approach is based on the assumption that
the backbone conformations of the native and denatured
states are only slightly affected upon mutation. It is
therefore restricted to single-site mutations, which are, in
general, the most liable to satisfy this assumption. In
total, 344 mutations are considered, the stability changes
of which have been measured experimentally [2, 3]. They
are introduced at different sites and secondary structures
in barnase, human, chicken and T4 lysozyme, chymo-
trypsin inhibitor 2, tryptophan synthase, apomyoglobin
and a synthetic helical peptide. These mutations are
divided into four subsets, according to the value of the
solvent accessibility of the mutated residues computed
by the program SurVol [9]: 106 mutations with a solvent
accessibility of more than 50% (listed in Ref. [6]), 48
between 40 and 50%, 69 between 20 and 40% and 121 of
less than 20% (listed in Ref. [7]).

3 Estimation of the stability changes upon mutation

To estimate the stability changes upon mutation, we
compute the folding free energy AG of the wild-type and
mutant structures, denoted C, and C, respectively.
Assuming that point mutations only slightly modify the
native backbone structure (Cy ~ Cy) and the denatured
state, the folding free-energy changes are evaluated by:

AAG = AGw(Cy) — AGy(Cy) . (1)

The folding free energies AG are estimated using mean
force potentials derived from a set of 141 well-resolved
and refined protein structures, with low sequence
homology (see Ref. [10] for a list). Two main types of
potentials are used: backbone torsion potentials and
distance potentials.

3.1 Torsion potentials

Torsion potentials [11] are based on a local representa-
tion of the backbone structure in terms of seven domains
in (¢,,w) backbone torsion angles, and describe local
interactions along the chain. They are computed from
propensities of amino acids a, at position k along the
sequence, to be associated with a (¢,),w) domain ¢, at
position i along the sequence, or with pairs of (¢,,w)
domains (#,¢) at positions iand j:

AG(C) = —kgT Z

l/kl

P(t;, t; | ax)
P(t,1))

; (2)
where N is the number of residues in the sequence, kp is
the Boltzmann constant and 7 is a temperature taken to
be room temperature. Two types of torsion potentials
are defined. The first, called tors1onshort range> Contains
contributions from the residues in the sequence
window k- 1<i<j<k+1, and the second, called
tOrsioNmiddie-range> from the interval k — 8 < i< j< k+8.
{r 1s a normalisation coefficient ensuring that each
residue in the window is counted once; it is equal to the
window width, except near chain ends.
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3.2 Distance potentials

Distance potentials are based on a representation of the
backbone structure in terms of spatial distances between
the residues, measured here between average side chain
centroids depending on the amino acid type, denoted C*.
They are derived from the propensities of amino acid
pairs (a;,a;) at positions i and j along the chain to be
separated by a given spatial distance d; We consider
three different distance potentials. The first [7], denoted
cr-ct describes exclusively non-local interactions

long-range”®
along the chain:
P(dyjlai, a))
AGy = —kgT » log——"—= | 3
(€)= —tarY g » ©

i<j

where j > i + 15. The second potential [12], denoted
simply C* — C*, describes both local and non-local
interactions. For residue pairs that are close along the
chain, i.e. 1 < j—1i < 8, it is computed separately for
each residue separation j — i:

“(dyjlai, a))

AG :—kTZlog Pri(d

)
i<j )

(4)

whereas for residues that are distant along the sequence,
j —i=>38, all sequence separations are merged and the
potential is given by Eq. (3). These two potentials are
dominated by hydrophobic interactions. The third
potential [8], referred to as C*-CY,_, is quite different:

elec>
N
= kaTZlog
i<j
% (d1,7a,,a,)
[P/~ (ai, a;) P/ (dwa)P’ (dijsa;)l/ [P~ (@) PI~ (a;) P~ (dyy)]

(5)
where a different potential is computed for each value of
j—iwith 1 <j—i<38, and a single potential for all
j —i=38. Here, instead of comparing the propensity of
two residues to be at a given distance with the propensity
of any two residues to be at that distance, as in Egs. (3)
and (4), it is compared with the propensity of each of the
two residues to be at that distance from any other
residue. This potential corresponds to a different way of
extracting the physical correlations between the amino
acids and the tertiary structure from the bulk interac-
tions due to the presence of many residues in a protein.
It attaches less weight to hydrophobic interactions than
the potentials defined by Eqs. (3) and (4). It has proven
[8] to be better suited for describing proteins in an apolar
medium or protein regions stabilised by electrostatic
interactions.

4 Results

Linear combinations of the torsion (Eq. 2) and distance
potentials (Eqs. 3-5) are used to evaluate the AAGs of
the set of 344 mutations. These AAGs are then correlated
to the experimentally measured ones, assuming a linear
regression. We found that none of the potentials tested,



48

neither alone nor in combination, gives good estimation
of the AAGs for the whole set of mutations. It turns out
that, to reach a satisfactory accuracy level, the set must
be divided into subsets depending on the solvent
accessibility of the mutated residues.

4.1 Mutations of surface residues
(solvent accessibility 2 50%)

For the 106 mutations of solvent-accessible residues, the
potentials yielding the best correlations between mea-
sured and computed AAGs are the torsiongnori-range OF
tOrsioNmigdie-range POtentials taken alone [6]. The corre-
lation coefficient is rather low, however: 0.67. But, as
seen in Fig. 1, this low score is due to a few mutations
that are far from the regression line. To identify
objectively these outsiders, we use an automatic sorting
procedure, which excludes one mutation at a time from
the original set, until the correlation coefficient exceeds a
given value; the rejected mutation is the mutation that,
when discarded, gives rise to the highest correlation
coefficient on the remaining mutations.

With this sorting procedure, we find that dropping
only 10 out of the 106 mutations increases the correla-
tion coefficient up to 0.87 for both the torsiongyori-range
and the torsionmigdie-range potentials. The torsion po-
tentials thus reliably estimate the stability changes of the
remaining 96 mutations, and the ten excluded mutations
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Fig. 1. AAGs computed with the torsiongneri.range potential as a
function of measured AAG (in kcal/mol) for the set of 106 surface
mutations (green A symbols), with in addition the subset of more
buried mutations that involve mainly local interactions along the
chain, i.e. 23 mutations of partially exposed mutations (turquoise <
symbols) and 1 partially buried mutation (red square). The ten
surface mutations rejected by the sorting procedure, of which two
are included as green A symbols in Fig. 2, are indicated by their
sequence position flanked by the mutated and mutant amino acids.
The correlation coefficient between measured and computed AAG on
the 96 remaining surface mutations is equal to 0.87. With addition
of the 24 partially buried and partially exposed mutations, it
improves up to 0.89

may be suspected to possess unusual characteristics. This
is indeed the case: seven of them have a proline either as
mutant or as mutated amino acid and therefore very
probably cause (certainly when it occurs in a helix)
backbone rearrangements with switching of (¢,,w)
domains. That this actually happens could be verified for
the A82 — P mutation in T4 lysozyme, where both the
wild-type and mutant structures have been determined.
The departure of T105 — V in barnase from the
regression line is less clear, but could perhaps also be
attributed to modifications of the backbone structure.

The reason why the two mutations T16 — S and
T16 — G in barnase are not well predicted is different.
They involve the breaking of strong hydrophobic inter-
actions, which are atypical for surface residues and are
better evaluated by distance potentials than by torsion
potentials. Hence, though T16 has a solvent accessibility
of more than 50%, it fits in the set of totally buried
residues (Fig. 2). The mutation D8 — A, which is only
rejected by the torsionghoer-range POtential, also involves
interactions not well-represented by torsion potentials,
i.e. electrostatic interactions.

4.2 Mutations of totally buried residues
(solvent accessibility < 20%)

The potential that performs best on the 121 mutations of

totally buried residues is the C“-C{fmg_range potential, with
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Fig. 2. AAG computed with the sum of the C" - Cgngrange
potential and 0.4 times the torsionmjqdic-range POtential as a function
of measured AAG (in kcal/mol) for the set of 121 totally buried
mutations (black + symbols), with in addition the subset of less-
buried mutations that involve mainly non-local interactions along
the chain, i.e. 2 surface mutations (green A symbols), 14 mutations of
partially exposed mutations (turquoise < symbols) and 3 partially
buried mutations (red squares). The correlation coefficient between
measured and computed AAG on the 121 totally buried mutations is
equal to 0.80. With addition of the 19 partially buried, partially
exposed and fully exposed mutations, it drops to 0.79



a correlation coefficient between experimental and
computed AAGs of 0.78 [7]. Thus we recover the well-
known result that hydrophobicity is the dominating
stabilising force in the protein core. This score of 0.78 is
improved up to 0.80 by adding to this potential the
tOrsionNmiddie-range POtential weighted by a factor of 0.4
(Fig. 2). This increase can be taken as statistically
significant: when shuffling the AAGs computed with the
torsion potential and adding them, with various weight-
ing coefficients, to the AAGs computed with the distance
potential, the score is increased by 0.02 or more in only
1 out of 1000 trials. Hence, though the hydrophobic
interactions are the most important ones, the local
interactions along the chain, responsible for secondary
structure formation, are not negligible.

Though this score of 0.80 is not bad, it is significantly
lower than the score of 0.87 obtained, with the sole
torsion potential, for 96 out of the 106 surface residue
substitutions. The C* — C* potential therefore seems to
measure the AAGs for core residues less well than the
torsion potential does for surface residues. Several rea-
sons can be invoked to explain this. One is related to
packing modifications. Indeed, among the mutations of
buried residues, some involve rather large changes in
side chain size. They therefore modify the packing in the
core: either the mutations create cavities or they induce
strain. According to the flexibility in the environment of
the mutations, the cavities are more or less easily filled
and the strain relaxed. In principle, the distance poten-
tials could take this effect into account, but they do not
seem to be precise enough. To check this, we consider
among the 121 core mutations the 23 mutations for
which the radii of the mutated and mutant amino acids
differ by at most 0.1 A. On this subset, the correlation
coeflicient increases up to 0.87. It thus seems clear that
one of the shortcomings of our procedure is that it does
not account correctly for cavity formation and filling.

However, this is probably not the only shortcoming,
as we shall now see. The C* — C*.. potential was not
selected in the analysis described because it performs less
well than the other C* — C* potentials. On the 121
mutations of buried residues, it reaches a correlation
coefficient of only 0.67 [8]. If we focus on the subset of 75
core mutations where both the mutated and mutant
amino acids are hydrophobic, it does even worse, with a
score of 0.22. In contrast, on the subset where the mu-
tated or mutant (or both) amino acids are charged, the
correlation coefficient improves up to 0.83. This poten-
tial is thus better suited than the other C* — C* poten-
tials to describe charge-charge interactions, but less
suited to describe hydrophobic interactions. This indi-
cates that there is not a single universal potential; the
optimum potential depends not only on the solvent ac-
cessibility of the mutated residues and on the flexibility
of the environment, but also on the amino acid types.

4.3 Mutations of partially buried residues
(20% < solvent accessibility < 40%)

For the 69 mutations of partially buried residues,
neither torsion nor distance potentials taken alone yield
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good correlations between computed and measured
AAGs [7]. To reach good scores, the potentials must be
combined. The best correlation is obtained by adding
the C* — C* potential weighted by a factor of 0.7 to the
torsioNghort-range Potential (Fig. 3); however, the corre-
lation coefficient so obtained is not very high (0.71). As
in the case of the surface mutations, this is due to a few
mutations that are far from the main group. Using our
sorting procedure, we identify the outsiders: T26 —» E
in barnase, A4l - V in T4 lysozyme and D71 —» A
and V79 — G in chymotrypsin inhibitor. With these
mutations excluded, the correlation coefficient is 0.82.

The reason why these mutations are far from the re-
gression line seems to be that the interactions involved
are not well described by the considered combination of
potentials. Indeed, the first mutation fits well in the set of
surface mutations (Fig. 1) and thus implies essentially
local interactions along the chain, while the other three
mutations fit well in the set of core mutations (Fig. 2)
where hydrophobicity is preponderant.

4.4 Mutations of partially exposed residues
(40% < solvent accessibility < 50%)

None of the tested linear combinations of torsion and
distance potentials leads to a good score for the 48
mutations of partially exposed residues [7]. They actually
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Fig. 3. AAG computed with the sum of the torsiongori-range potential
and 0.7 times the C* — C* potential as a function of measured AAG
(in kcal/mol) for the set of 69 partially buried mutations (red squares),
with in addition the subset of mutations for which the local and non-
local interactions along the chain have roughly the same weight, i.e.
11 mutations of partially exposed mutations (turquoise < symbols).
The four partially buried mutations rejected by the sorting procedure
and included as red squares in Figs. 1 and 2 are indicated by their
sequence position flanked by the mutated and mutant amino acids.
The correlation coefficient between measured and computed AAG on
the 65 remaining partially buried mutations is equal to 0.82. With
addition of the 11 partially exposed mutations, it drops to 0.80
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seem to have no common characteristics. Indeed, these
mutations can be divided into three subsets, which fit in
the sets of mutations of surface, partially and totally
buried residues, respectively (Figs. 1-3). This clearly
shows that for these mutations, the solvent accessibility
of the mutated residues is not a good measure for
determining which potential must be used, and thus
what the dominant interactions are.

5 Discussion

The first conclusion that emerges from our analysis is
that when moving from the protein surface into the core,
the non-local interactions along the chain, represented
by distance potentials, gain importance, whereas the
local interactions, represented by torsion potentials, lose
importance, without actually disappearing. On the one
hand, this confirms the role of hydrophobic interactions
in the core; on the other hand, it emphasizes the
dominance of local interactions at the surface and their
non-negligible role in the core.

Our analysis also clearly shows the uselessness of trying
to design a single universal database-derived potential
able to reliably evaluate protein folding free energies.
These energies can only be evaluated using linear combi-
nations of different kinds of potentials, with coefficients
depending, among other things, on the solvent accessi-
bility of the mutated residues. This approach allows sat-
isfactory estimation of stability changes caused by single-
site mutations. Its accuracy should, however, improve by
considering cavity formation or filling, by varying the
combination of potentials as a function of the amino acid
types, and by taking possible backbone structure modifi-
cations into account. The latter improvement should al-
low the approach to be extended to multiple mutations.
This will be the objective of future work.
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